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Abstract—This paper presents a systematic study on adaptive
streaming over MPTCP. We start from realworld experiments
with Dynamic Adaptive Streaming over HTTP (DASH) and
analysis on its performance over MPTCP. We show that DASH
can greatly benefit from the improved aggregated throughput by
MPTCP; yet the inter-path throughput difference and the intra-
path throughput fluctuation have noticeable (negative) impact,
too. Without a proper design of path selection and adaptation in
MPTCP, they can easily confuse the adaptation logic of DASH,
resulting in low bitrates or frequent rebuffering even if high-
bandwidth paths are available. We present MPTCP+, an extended
multipath TCP solution to offer high quality and smooth play-
back for adaptive HTTP streaming. MPTCP+ incorporates a
path use decision algorithm that smartly disables/enables a path
to minimize the inter-path difference, and a novel congestion
control algorithm that smooths congestion window evolution with
multiple paths. We have implemented MPTCP+ in the MPTCP
Linux kernel, with minimum change on the server-side MPTCP
module only. It is fully compatible with the existing MPTCP
clients and requires no change on the upper-layer protocols, too.
Our experiments suggest that MPTCP+ increases the quality of
experience (QoE) of DASH by up to 50%.

I. INTRODUCTION

HTTP-based adaptive video streaming has become the most
popular solution for online video applications, and it is still
having a rapid growth in the Internet traffic. For example,
in the peak evening hours, HTTP video streaming traffic
(from the services such as Netflix and YouTube) accounts
for more than 60% of all downstream traffic worldwide
according to the global Internet report [1, 2]. In fact, adaptive
bitrate (ABR) is efficient for video content delivery under
varying network conditions. First, online video viewers use
heterogeneous networks with different capacity to fetch video
content, and it is difficult to satisfy diverse quality demands
with the same bitrate. Second, fixed bitrate could be too
aggressive when network conditions drop to a poor level
(due to congestion or link transport error), thus degrading
video quality of experience (QoE). In contrast, ABR can
detect network conditions and intelligently switch between
multiple bitrates. The standardized protocol Dynamic Adaptive
Streaming over HTTP (DASH) [3], also known as MPEG-
DASH, has been widely adopted by online video services.
DASH does not need specialized media servers, and media

content can be delivered over widely deployed HTTP-based
Content Delivery Networks (CDN). In addition, since DASH’s
data is encapsulated with regular TCP and HTTP headers, it
can traverse firewalls and NAT well in the Internet [4].

End-to-end throughput provided by transport layer is fun-
damentally critical to DASH video quality. While there have
been many application-layer approaches that improve DASH
ABR logic [5–7], recent work has started learning transport
protocol’s throughput pattern during DASH video delivery
[8]. High and stable throughput of a transport protocol is
always desirable for DASH videos. In fact, transport through-
put decides the quality of video streaming (e.g., 1Mbps for
480p H.264 videos, and 5Mbps for 1080p H.264 videos), and
stable throughput can also avoid frequent bitrate switches.
Nevertheless, the conventional TCP is hard to serve these
goals. It has been discussed in [9] that an adaptive video stream
over TCP can have abrupt throughput drop when coexisting
with other competing flows and this will cause low average
throughput. Also, many congestion control designs for video
applications seek to improve the highly fluctuating sending rate
of TCP [10]. Given the importance and high-quality demand
of adaptive streaming application in the current Internet, it is
necessary to redesign the transport protocol that can offer high
and stable throughput for adaptive streaming, without losing
compatibility and fairness to other applications.

Multipath TCP (MPTCP) is a transport protocol that enables
an end-to-end TCP-based connection to use multiple paths
for data transmission, and it has been published as RFCs
[11–13]. MPTCP matches the multihoming network scenarios,
e.g., ubiquitous mobile devices equipped with both WiFi
and cellular interfaces. Compared with regular TCP, MPTCP
brings the advantages: it can obtain aggregate bandwidth from
concurrent usage of multiple paths, thus increasing throughput
[14, 15], and it can also improve the window fluctuation of
TCP [16]. Hence, MPTCP has great potential to serve DASH
video streams. However, the practical performance of MPTCP
for adaptive streaming application remains largely unclear to
the research community.

In this paper, we first analyze the performance of DASH
over MPTCP on a realworld testbed, and we find that although
MPTCP can significantly increase aggregate throughput there
are also challenges. First, large inter-path bandwidth difference
confuses the ABR logic of DASH. The low-throughput path978-1-7281-6887-6/20/$31.00 c© 2020 IEEE
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Fig. 1. Testbed setup

increases the download duration of a video segment and feeds
back to the ABR logic to reduce bitrates. This will result in
low bitrates or rebuffering even if there is a high-bandwidth
path. Second, smooth playback suffers from the throughput
fluctuation of MPTCP. The violent fluctuation of subflow
congestion window (cwnd) can be added and exerted on the
total cwnd. This may lead to frequent bitrate switches in
DASH’s ABR logic. While previous work has studied the fixed
bitrate streaming over MPTCP [17] and the preference-aware
MPTCP for DASH [18], the above problems have never been
investigated in the literature but could degrade DASH video
streaming quality.

Motivated by these problems, we design, implement and
evaluate MPTCP+, an extended multipath TCP solution for
adaptive streaming. The goal of MPTCP+ is to serve high
quality and smooth playback of adaptive streaming. MPTCP+
incorporates the path use decision (PUD) and the multipath
congestion control (MCC). PUD enables a path if its estimated
throughput is close enough to the highest throughput among
paths and disables it otherwise. PUD uses the sampled socket
information of each MPTCP subflow to calculate the average
throughput on each path. MCC introduces a smoothing factor
in the coupling of all subflow cwnds and alleviates the sending
rate fluctuation. MCC uses a Round Trip Time (RTT) based
condition to trigger the smoothing for both increase and
decrease of each subflow cwnd. We implement MPTCP+ in the
MPTCP Linux kernel. MPTCP+ has minimum change on the
server-side MPTCP module only. It is fully compatible with
the existing MPTCP clients and requires no change on the
upper-layer protocols, too. We discuss the parameter selection
of MPTCP+ and evaluate its performance in realworld experi-
ments. Our results show that MPTCP+ outperforms MPTCP in
both video segment download time and throughput, and it can
increase the QoE of DASH streaming by up to 50% compared
to MPTCP in different network conditions.

The remainder of this paper is organized as follows. Sec-
tion II analyzes the performance of DASH over MPTCP. In
section III, we present the design of MPTCP+. Section IV
discusses the parameter selection and evaluates MPTCP+ in
the experiments. Section V concludes the paper.

II. DASH OVER MPTCP: CHALLENGES

A. Inter-path Throughput Difference

We first examine how inter-path throughput difference im-
pacts the video quality. As shown in Fig. 1 (see the detailed
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Fig. 2. DASH over MPTCP: x1 and x2 are average throughputs of the two
paths; Large throughput difference cause low bitrates of DASH.

testbed setup in section IV), there are two available paths for
MPTCP. We limit the download speeds, so that the two paths
can have different configurations, i.e., two paths with large
throughput difference or with small throughput difference. For
each configuration, we record the instant throughput on each
path and the DASH video bitrates.

Fig. 2 shows the results. We calculate the relative throughput
difference (i.e. the ratio of two path throughputs). For the
two cases in Fig. 2, DASH starts from the same bitrate
808.057Kbps, which is a moderate level among the bitrate
representations. After the first bitrate, DASH will request the
next bitrates by following the decision of its ABR logic. The
ABR logic is unaware of multipath at the transport layer. As
shown in Fig. 2(a), the throughput difference between the
two paths is x1/x2 ≈ 0.486, and DASH sensitively reduces
the bitrates to a low level. We can see that the bitrates are
constrained by the low-throughput path. When the throughput
difference becomes smaller (x1/x2 ≈ 0.869) as shown in Fig.
2(b), there is no obviously low-throughput path that can affect
the DASH video bitrates. Our results indicate the performance
degradation of DASH streaming in large inter-path throughput
difference. This motivates us to find an efficient approach
to timely disable the low-throughput path when there is
large throughput difference among the used paths. Since the
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Fig. 3. Rebuffer event and low bitrate resulting from large inter-path throughput difference.
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Fig. 4. Violent window fluctuation of MPTCP for the first 47 seconds DASH video transfer: each path has download speed limit 500Kbps.

experimental results apply to adaptive streaming rather than
general data transmission, the modification of MPTCP path
usage should be at DASH server side.

We first analyze the inefficiency of low throughput path
(i.e., why the low throughput path leads to the decrease of
DASH bitrates) in the multipath video transfer. Video player
uses the playout buffer to maintain constantly non-interrupted
video playback. The buffer size is usually limited to a few
seconds. Fig. 3 shows an example of the inefficiency of using
multiple paths with large throughput difference: the video
segment (4Mbps bitrate) is first cut and packed into multiple
TCP packets, and then each packet is assigned to a path
(with capacity of 5Mbps or 1Mbps) by the MPTCP scheduler.
Clearly, the packets sent over the low-throughput path will
increase the download time of their belonging video segment.
Then the video segment delay will make the DASH’s ABR
logic (ThroughputRule and AbandonRequestsRule [20]) select
low bitrates for the next segment. This is because the ABR
algorithms [20] use per-segment throughput or delay to decide
bitrates. Even worse, if the delay exceeds the requirement of
the playout buffer, the rebuffer event may happen.

B. Intra-path Window Fluctuation

In addition to high bitrate, smooth playback is also impor-
tant for the quality of adaptive streaming. Multiple paths with
similar throughputs can avoid low video bitrates, but bitrate
oscillations may happen due to highly fluctuating throughput.

As shown in Fig. 2(b), the instant throughputs of the two paths
experience large variation, and the DASH video suffers from
frequent bitrate switches. Although DASH can benefit from
high aggregate throughput of MPTCP, its playback may suffer
from violent throughput fluctuation brought by the throughput
aggregation. Each subflow maintains its own cwnd and runs
the coupled congestion control algorithm on its belonging path.
The coupled multipath congestion control introduces the total
cwnd, which is the sum of the subflow cwnds. The subflow
cwnd fluctuation can be added and exerted on the total cwnd,
resulting in the fluctuation of the aggregate throughput. If
the total cwnd has a highly fluctuating pattern, it will trigger
DASH’s ABR logic to switch bitrate frequently, and it will lead
to bitrate oscillations and instable quality of DASH streaming.
As shown in Fig. 4, there are highly fluctuating subflow cwnds
during the DASH video playback, and this causes violent
fluctuation of the total cwnd and severe bitrate oscillations.

III. DESIGN OF MPTCP+
A. Path Use Decision

PUD can stop using low-throughput paths once it detects un-
acceptable inter-path throughput difference. First, it estimates
the throughput of each path. Then it calculates the inter-path
throughput difference and disable the low-throughput paths if
necessary.

PUD module first smooths the sampled throughput data. By
using the smoothing, we can reduce short-term fluctuations.
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Algorithm 1: Path Use Decision
Input: TCP socket of each subflow r: sub sk
Output: Set of allowed paths: A

1 Initialization:
2 max mean SendRate← 0 num samples← n
3 for each subflow r do
4 rtt[r]← 0; SendCwnd[r]← 1MSS;

SendRate[r]← 0; sum w SendRates[r]← 0
mean SendRate[r]← 0; sum last2[r]← 0

5 Decision on allowed paths:
6 for each subflow r do
7 for each sample i of subflow r do
8 rtt[r] = read rtt(sub sk);

SendCwnd[r] = read SendCwnd(sub sk);
SendRate[r] = MSS ∗ SendCwnd[r]/rtt[r];

9 /*refer to DASH’s ThroughputRule to average the
throughputs of the last three segments*/

10 if i = 1 then
11 /*smooth send rate*/

S SendRate[i] = SendRate[r];
12 if i = 2 then
13 S SendRate[i] =

(sum last2[r] + SendRate[r])/2;
14 if 2 < i ≤ n then
15 S SendRate[i] =

(sum last2[r] + S SendRate[i])/3;
16 update sum last2[r];
17 /*sum of weighted send rates*/
18 sum w SendRates[r] = +i ∗ S SendRate[i];
19 /*update the maximum average throughput of

multiple subflows*/
20 if

2∗sum w SendRates[r]
i(i+1) > max mean SendRate

then
21 max mean SendRate =

2∗sum w SendRates[r]
i(i+1) ;

22 mean SendRate[r] = 2∗sum w SendRates[r]
n(n+1) ;

23 if mean SendRate[r] > ρ ∗max mean SendRate
then

24 add path r to the allowed path set A;

25 else
26 SendCwnd[r] = 0;

27 return A

We adopt the smoothing algorithm Moving Average (MA),
which calculates the average of a sample subset with fixed size
and shifts the calculation across the time series samples. We
use the average of the last three sampled throughput values.

Let n be the number of samples. PUD uses the weighted
average of the MA throughput values. PUD gives the MA of

the nth sample the largest weight n, and it gives the ith sample
(1 ≤ i < n) a weight i. This is because we want to weaken
the influence of the samples taken during the initial playback
and emphasize the importance of the latest samples. Let xr be
the weighted throughput average of each subflow r, and it is
expressed as xr =

∑n
i=1 MA(i)

r ·i
n(n+1)/2 .

PUD calculates the average throughput xr for each subflow
r and obtains the maximum maxr xr. Then PUD uses a param-
eter ρ to set the threshold of throughput. If xk ≤ ρmaxr xr,
the congestion window of subflow k will be reduced to zero.
If ρmaxr xr < xk ≤ maxr xr, subflow k will be added to the
allowed path set. In section VI, we will discuss the selection
of parameters n and ρ. The pesudo code for implementation
is summarized in Algorithm 1. More implementation details
are introduced in section V.

B. Multipath Congestion Control
MPTCP+ does not directly use the existing multipath con-

gestion control algorithms such as LIA [19], OLIA [15] and
Balia [16]. This is because our design goal is to provide high
and stable throughput. In order to achieve stable throughput,
we design the congestion control that can smooth the total con-
gestion window and deal with the highly fluctuating window
performance.

We use the network model which is similar to [15].
MPTCP+ should ensure TCP-friendliness and have less fluctu-
ating window evolution. These design goals lead us to propose
the following fluid model:

dxr
dt

= θx2r

( 1

RTT 2
r (
∑

k∈s xk)2
− 1

2
λr

)
(1)

where θ is the smoothing factor and it is expressed as follows:

θ =

{
mink∈s wk∑

k∈s wk
if RTTr > 1.5Γr

1 else
(2)

Γr is the weighted mean of last ten RTTs. We now illustrate
how the fluid model serves our design goals. According to
the theoretical analysis in [19], RFC 6356 [12] and [15], our
model satisfies the TCP friendliness requirement.

Next we illustrate how the factor θ smooths the window
fluctuation. Peng et al. [16] study the properties of multipath
congestion control algorithms and generalize the existing
algorithms including LIA [19], OLIA [15] and Balia [16] with
the following fluid model:

dxr
dt

= ϕr(xs)(φr(xs)−
1

2
λr) (3)

where φr(xs) determines the equilibrium properties, and
ϕr(xs) determines the dynamic properties including window
fluctuation. LIA [19], OLIA [15] and Balia [16] all have
ϕr(xs) = x2r , and they are all loss-based congestion control
algorithms. In [16], the authors use ϕr(xs) as a measure of
window fluctuation, and it has been discussed that smaller
ϕr(xs) means smaller window fluctuation. Our model in
Equation (1) can also be generalized by Equation (3), and
we have ϕr(xs) = θx2r . Because θ ≤ 1 (Equation (2)), our
algorithm can have smaller window fluctuation.
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Fig. 6. DASH video quality change with inter-path download speed difference (C1/C2).

IV. PERFORMANCE EVALUATION

Our testbed is an end-to-end DASH video streaming system.
As shown in Fig. 1, the system includes the server and
client machines, both equipped with double network interfaces.
We install Ubuntu 14.04 and the MPTCP Linux kernel of
version 0.90 on each machine. We use the default LowRTT
scheduler in MPTCP. We use the command-line based network
traffic shaping tool wondershaper [21] to change download and
upload speeds. We use the Linux kernel module tcpprobe to
record the state of MPTCP subflows during video transmission
and capture the time-varying variables such as instantaneous
throughput and cwnd on each path. At the server side, we use
Apache2 [22] as our HTTP server. We use the open dataset
of DASH videos [23, 24]. The dataset uses the source video
quality of 1080p YUV and H.264/MPEG-4 AVC codec. The
source video has a length of 596 seconds and is chunked
into 596 video segments. Each video segment has a length
of one second and is encoded with 20 bitrate levels ranging
from 46.980Kbps to 4726.737Kbps [24]. At the client side,
we use dash.js [25] as the DASH player. The video playback
calls dash.js and uses the Media Source Extensions (MSE)
supported by Firefox browser of version 49 [26].

A. Parameter Selection
The PUD algorithm in subsection III.A needs to set two

parameters: the number of samples n and the threshold ρ.

Let xi be the throughput of sample i and x be the average
throughput. Fig. 5 shows that the standard deviation changes
with the number of samples n in different throughput patterns.
We use MPTCP to transmit DASH video segments. Path 1
has high throughput and Path 2 has low throughput. Fig.
5 shows that the high throughput path has large standard
deviation. Both the paths have relatively stable deviation when
the number of samples becomes large. We see that 150 samples
are enough for a path to arrive at its stable state.

Next we select the parameter ρ. Fig. 6 shows the DASH
video quality change with inter-path throughput difference.
As we make the ratio C1/C2 change from 0.5 to 0.8, the
video quality (measured by the average of ever used bitrates)
decreases with the inter-path throughput difference. We see
that the negative impact of inter-path throughput difference
is still there at C1/C2 = 0.5 and C1/C2 = 0.6, especially
when we use relatively slow download speed (Fig. 6(a)). When
C1/C2 > 0.6, we achieve better video quality. Considering the
overall performance, we set the threshold ρ = 0.6.

B. QoE of DASH Video Playback

We examine the video segment download delay and
throughput of DASH over MPTCP+ and MPTCP, respectively.
The traces of video segment size and download delay are
recorded by the network inspector of Firefox browser of
version 49 [26]. We control the path bandwidth and change
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the ratio of two paths’ bandwidth values. Fig. 7 compares
video segment delays (using Cumulative Distribution Func-
tion (CDF)) for MPTCP+ and MPTCP. The results show
that MPTCP+ outperforms MPTCP from the perspective of
segment download delay. Video segments on low-throughput
paths increase their download delays. Our results indicate
that MPTCP+ can disable the low-throughput path and thus
obtain better download performance. Fig. 8 compares segment
download speeds for MPTCP+ and MPTCP during DASH
video playback. MPTCP+ achieves higher segment download
speed than MPTCP, especially in the case of 1500Kbps
average bandwidth and large inter-path throughput difference
(as shown in Fig. 8(a)). Note that we use the software tool
wondershaper to set the traffic limits C1 and C2, which can
be described as the average bandwidth. The instantaneous
throughput and single video segment download speed can be
much higher than the average bandwidth.

V. CONCLUSION

In this paper, we have studied the performance of MPTCP
for DASH video streaming and proposed a variant of MPTCP
to address the problems of inter-path throughput difference
and congestion window fluctuation. The proposed solution
MPTCP+ can use its path use decision module to disable
very low throughput paths and help DASH’s ABR logic to
increase bitrate. The multipath congestion control module of
MPTCP+ can improve congestion window fluctuation that may
lead to DASH bitrate oscillations. The realworld experiment
results have shown that MPTCP+ can improve video segment
download throughput and increase the QoE of DASH video
playback. The future work will be concerned with efficient and
fair transport layer solution for bottleneck-shared competing
DASH streams.
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